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Abstract. The North American power grid is one of the most complex technological networks, and its
interconnectivity allows both for long-distance power transmission and for the propagation of disturbances.
We model the power grid using its actual topology and plausible assumptions about the load and overload
of transmission substations. Our results indicate that the loss of a single substation can result in up to 25%
loss of transmission efficiency by triggering an overload cascade in the network. The actual transmission
loss depends on the overload tolerance of the network and the connectivity of the failed substation. We
systematically study the damage inflicted by the loss of single nodes, and find three universal behaviors,
suggesting that 40% of the transmission substations lead to cascading failures when disrupted. While the
loss of a single node can inflict substantial damage, subsequent removals have only incremental effects, in
agreement with the topological resilience to less than 1% node loss.

PACS. 89.75.Fb Structures and organization in complex systems – 02.10.Ox Combinatorics; graph theory
– 84.70.+p High-current and high-voltage technology: power systems; power transmission lines and cables
– 89.75.Hc Networks and genealogical trees

1 Introduction

The US power transmission system was built over the past
100 years by vertically integrated utilities that produced
and transmitted electricity locally. Interconnections be-
tween neighboring utilities were later created to increase
reliability and share excess generation. In a major policy
decision, in 1996 the Federal Energy Regulatory Commis-
sion introduced free and competitive access to the grid,
with the goal of lowering costs to consumers by increasing
the efficiency of operation [1]. Today the North Amer-
ican power grid is one of the most complex and inter-
connected systems of our time, and about one half of
all domestic generation is sold over ever-increasing dis-
tances on the wholesale market before it is delivered to
customers [2]. Unfortunately the same capabilities that
allow power to be transferred over hundreds of miles also
enable the propagation of local failures into grid-wide
events [3]. As the demand on the transmission system
continues to rise and generation patterns shift, the power
grid is subjected to flows in magnitudes and directions
that have not been studied or for which there is mini-
mal operating experience [2]. It is increasingly recognized
that understanding the complex emergent behaviors of
the power grid can only be understood from a systems
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perspective, taking advantage of the recent advances in
complex network theory [4]. Here we focus on modeling
cascading failure events such as that causing the August
2003 blackout.

Recently a great deal of attention has been devoted to
the analysis of error and attack resilience of both artifi-
cially generated topologies and real world networks. The
first approach that has been followed by researchers is that
of static failures [5–11] and consists in removing a certain
percentage of elements of the system and evaluating how
much the performance of the network is affected by the
simulated failure. Following such an approach it has been
shown that the removal of a sizable group of nodes can
have significantly deleterious consequences. Nevertheless,
in most real transportation/communication networks, the
breakdown of a single or of a very small size group of el-
ements can be sufficient to cause the entire systems to
collapse, due to the dynamics of redistribution of flows on
the networks. To take into account this phenomenon, dy-
namical approaches have been developed [12–19]. Those
are based on the fact that the breakdown of a single com-
ponent not only has direct consequences on the perfor-
mance of the network, but also can cause an overload and
consequently the partial or total breakdown of other com-
ponents, thus generating a cascading effect.
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Here, we use data on the network structure of
the North American power grid obtained from the
POWERmap mapping system developed by Platts,
the energy information and market services unit of the
McGraw-Hill Companies [20]. This mapping system con-
tains information about every power plant, major sub-
station, and 115–765 kV power line of the North Ameri-
can power grid. Our reconstructed network contains N =
14 099 substations and K = 19 657 transmission (power)
lines. The substations can be divided into three differ-
ent groups: the generation substations set GG, whose
NG = 1633 elements produce electric power to distribute,
the transmission substations set GT , whose NT = 10 287
elements transfer power along high voltage lines, and the
distribution substations set GD, whose ND = 2179 ele-
ments distribute power to small, local grids [11].

2 The model

We model the power grid as a weighted [21,22] graph G,
with N nodes (the substations) and K edges (the trans-
mission lines) and we represent it by the N ×N adjacency
matrix {eij}. The element eij of this matrix is 0 if there
is no direct line from the substation i to the substation j;
otherwise it is a number in the range [0, 1] that represents
the efficiency of the edge. Initially, for all existing edges,
eij is set equal to 1, meaning that all the transmission
lines are working perfectly. We define the efficiency of a
path (succession of consecutive edges) between two nodes
i and j as the harmonic composition of the efficiencies
of the component edges. The harmonic composition of N

numbers x1, x2, ..., xN is defined as [
∑N

i 1/xi]−1 and finds
extensive applications in a variety of different fields: in
particular it is used to calculate the average performance
of computer systems [23,24], parallel processors [25], and
communication devices, for example modems and Ether-
nets [26]. A simple example will help to understand why
the harmonic composition is, in our case, a better option
than the arithmetic mean. Let us consider the following
three different paths connecting a given node pair. The
first path contains two edges, each with efficiency e = 0.5,
the second path contains three edges, each having e = 0.5,
the third path contains two edges, one with e = 0 and one
with e = 1. By using the arithmetic mean to calculate
the efficiency of a path, we would get that all three paths
above have equal efficiency ea = 0.5, despite the obvious
differences between the three paths. In contrast, the har-
monic composition gives three different numbers, 1/4, 1/6,
and 0, indicating that the first path is the most efficient.
Notice that the harmonic composition takes into account
the number of edges traversed, and that it is equal to zero
whenever a path contains an edge with e = 0, i.e. an edge
that is not working at all.

As previously observed, the North American power
grid forms a connected network, thus in principle power
from any generator is able to reach any distribution sub-
station[11]. But the nature of the product to be delivered
imposes some very peculiar rules on the way the electric-
ity is distributed from generators to users. First of all, the

total amount of electricity produced by generators must
at any time be equal to the total amount consumed by
users, plus any loss incurred in the high voltage trans-
portation system. Since the users are in complete control
of the the amount of electricity they use, the generators
must continually match the request, even if daily fluctua-
tions in demand of more than 100% are not uncommon.
In addition, there are few mechanisms to control how the
product flows through the transmission system from gen-
erators to distribution substations. Electric current flows
through the grid as dictated by the impedances of the
transmission lines and the precise location where the en-
ergy is injected by the generators and removed by the
users. Grid operators struggle to balance their own com-
pany’s service to its customers with third party users and
overall grid reliability, while frequently lacking necessary
information [27]. All these factors make it very difficult
to quantify the exact available transfer capacity (ATC) of
the electric grid. And once a set of ATC values has been
determined, it must be continuously updated because the
number of users and their requests are constantly chang-
ing, and because some transmission lines and generators
might be momentarily out of service [28].

For all such reasons, an exact treatment of the spatio-
temporal distributions of electric current in the grid, based
on standard potential theory, would require an enormous
amount of information and computer power[29]. Here, we
consider a simplified model in which we assume that the
electricity is transferred with equal probability from any
generator to any distribution substation and that the elec-
tricity is delivered by following the most efficient path.
The second hypothesis is the generalization of the short-
est path assumption commonly and successfully adopted
in many complex networks [4,30]. This way we are able
to follow the dynamical response of the system to failures,
and in particular to model how the failure in one location
can propagate and have consequences over the whole net-
work. The modeling of the electric power grid as a global
system, with the main focus on the effects of local struc-
tures on dynamics, is something that has been practically
absent from the research to date.

Both in the static and in the dynamic approach, in or-
der to quantify how well networks operate before and after
the occurrence of breakdowns, a measure of performance
has to be used. Here, as in [10,16,17], we use the average
efficiency of the network [22] that, adapted to the case of
the North American power grid, is defined as follows:

E =
1

NGND

∑

i∈GG

∑

j∈GD

εij (1)

where εij is the efficiency of the most efficient path be-
tween the generator i and the distribution substation j.
Once defined the efficiency E as a measure of performance,
the natural definition of the damage D that a failure
causes is the normalized efficiency loss [31]:

D =
E(G0) − E(Gf )

E(G0)
, (2)
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where E(G0) is the efficiency of the network before the
occurrence of any breakdown and E(Gf ) is the final
efficiency that is reached by the system after the end of
the transient due to a breakdown, i.e. when the network
efficiency stabilizes.

In this paper we use the dynamical approach of the
Crucitti-Latora-Marchiori (CLM) model of reference [16],
adapting it to our network. We assume that each generator
transfers power to all the distribution substations through
the transmission lines. The generators also have transmit-
ting capabilities, so they are both sources and intermedi-
aries in power transmission. This scenario could seem un-
realistic in the early days of electricity, when power was
produced by local generators and transmitted only to the
nearest distribution substations [3]. Nowadays, however,
power is often redirected hundreds of kilometers away and
our hypothesis that power from each generator can reach
each distribution substation is not far from reality.

Adapting previous work on complex networks [32,33]
we define the load (also called betweenness) of each node
with transmitting capabilities as the number of most ef-
ficient paths from generators to distribution substations
that pass through the node. This definition extends the
shortest paths node betweenness proposed by Freeman in
reference [34] to weighted networks [35]. As in the CLM
model, we associate to each node i a capacity Ci directly
proportional to the initial load Li it carries in the unper-
turbed network [13]:

Ci = αLi(0) i = 1, 2..N (3)

where α > 1 is the tolerance parameter that represents the
ability of nodes to handle increased load thereby resisting
perturbations.

If, due to external causes, a breakdown occurs at one
or more nodes, so that they cannot work at all, the most
efficient power transmission paths will change and the
power/load, since it cannot be destroyed, will redistribute
among the network. Sometimes this leads to a situation
in which a certain number of nodes, forced to carry a load
higher than their capacity, cannot function regularly any-
more and show a degradation of their performance. Such
a degradation can modify the most efficient paths, redis-
tribute the load on the network, and cause new nodes to
be overloaded. If the overload caused by the initial break-
down is small, degradation will involve only a tiny part
of the system, while if the overload to be reabsorbed is
large enough, it will spread over the entire system in an
avalanche mechanism, hindering any interaction among
nodes. The degradation of performance is represented by
the following dynamical model:

eij(t + 1) =
{

eij(0)/Li(t)
Ci

if Li(t) > Ci

eij(0) if Li(t) ≤ Ci
(4)

where j extends to all the first neighbors of i. In other
words, when a node i is congested, it is assumed that
the efficiency of power transportation from(to) i to(from)
its first neighbors decreases linearly with the overload
Li(t)/Ci. A benefit of the CLM model, and a difference
from the model in Ref.[14], is that it does not assume that

overloaded nodes fail irreversibly. Overloaded nodes have
the possibility of working again if, by power rerouting,
their load decreases below their capacity. In other words,
the effects of overload on nodes are reversible. Since the
substations of the US power grid are equipped with fail-
safe mechanisms that take them out of service in case of
a local supply/demand imbalance [36], but also can be
restarted when operating conditions normalize, reversible
node congestion is a better model of power grid failures
than irreversible loss of overloaded nodes. Moreover, no
explicit assumptions are made about the redistribution
of loads, but this redistribution emerges naturally from
the reorganization of efficient transmission paths follow-
ing a node failure. In this sense, the model is different from
models studied in references [12,15] where the load is the
quantity that is physically redistributed.

Simulating a network failure involves removing a node
from the network and monitoring the progression of over-
loading nodes. If the tolerance parameter α is high enough
the network does not present the cascading effect typical
of the redistribution of flows and its efficiency remains un-
affected by the failure. If the tolerance parameter is very
small, a cascading effect takes place and the transmission
efficiency of the network degrades rapidly. For intermedi-
ate values of α the network degrades more slowly and its
efficiency stabilizes to a value that is lower than or equal
to the initial one. We observed that the efficiency of the
network stabilizes into a steady state or small oscillations
around an efficiency value in about 10-20 steps (see inset
of Fig. 6).

The reason for the occurrence of oscillations is strongly
related to the reversibility of the effects of overload. Sup-
pose that two paths exist from generator i to the distribu-
tion substation j (path A and path B) and that under the
condition of perfect functioning (i.e. before the occurrence
of any breakdown) path A is more efficient than path B.
If at time t some nodes of path A become overloaded, B
becomes the most efficient path from i to j. If this implies
that most of the load passing through A is redirected to
B, the nodes of the former path will recover efficiency to
the detriment of some nodes of the latter one. Therefore
the situation in which the most efficient path from i to
j is A is restored and the redistribution of flows starts
again its cycle. This switching between alternative paths
causes the global efficiency to oscillate. Of course in the
real power grid the behavior is more complicated because
the described cycle is concurrent with a redistribution of
flows that involves the whole network. However the oscil-
lations are evident all the same [27].

3 Results

In our study, we have adopted two different types of node
overload progression schemes. The first is single node re-
moval in which a single node is removed at time zero and
the network is progressed in time. This way, we can model
the effects of an external perturbation of a single trans-
mission node or generator. Nevertheless, it could happen
that several nodes fail at the same time or in close suc-
cession or are shut down to save the equipment. In fact,
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Fig. 1. Global efficiency of the power grid after the removal
of random (triangles) or high-load (circles) generators (a) or
transmission substations (b). The unperturbed efficiency is
E(G0) = 0.04137. As the overload tolerance α of the substa-
tions increases, the final efficiency approaches the unperturbed
value. The random disruption curves were obtained by averag-
ing over 10–100 individual removals. The load-based disruption
curve is obtained by removing the highest load generator and
transmission node, respectively.

blackouts often occur because generators and transform-
ers are hardwired to protect themselves in response to a
drastic change. To model such type of cascading failure,
we develop a second node overload progression scheme in-
volving many cycles of node selection and removal and
network progression.

In both schemes, adopting the removal strategy from
[16], we have chosen nodes either randomly (random re-
moval) or selectively by highest load (load based removal)
and once removed, the efficiency of the network and the
load of the nodes were continually recalculated in time.
Only generation and transmission substations were re-
moved using the above strategy.

Our first results use the single-node progression scheme
for both removal types. Figure 1 shows a load based
(circle) removal and an average of at least 10 random
removals (triangle) for transmission and generation sub-
stations with final global efficiency as a function of the tol-
erance of the network. These figures indicate that above a
critical tolerance value of approximately 1.42, the removal
of the highest loaded transmitter and generator substation
has little effect on the overall network efficiency. How-
ever at values of tolerance below the critical value, the
global efficiency can be reduced by over 20%. For random
removals, the critical value is near 1.18 in both figures.
These results clearly indicate that the loss of nodes with
high load causes a higher damage in the system than the
loss of random nodes.

The North American power grid has a moderately
heterogeneous topology characterized by an exponential
distribution of the number of transmission lines per sub-
station (degree distribution) [11,37] and a generalized
power-law distribution of the node loads [11]. Thus the
topology of the power grid is an intermediate between
Erdős - Rényi random graphs that have a binomial de-
gree distribution and exponential load distribution and
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Fig. 2. Scatterplot of final network efficiency for given toler-
ance values for the removal of randomly selected generators (a)
or transmission substations (b). A total of 1668 generator and
1558 transmission node removals are presented on this figure.

between scale-free networks that have a power-law degree
distribution and a power-law load distribution [4,32]. Pre-
vious studies of cascading failures in the above network
classes [14,16] found that homogeneous networks and ran-
dom graphs are tolerant to both random and load-based
node failures, while scale-free networks are vulnerable to
cascading failures caused by the loss of high-load nodes.
Our results suggest that despite the limited variability
in the number of transmission lines per substation (be-
tween one and fifteen), the power grid has the potential of
exhibiting the same type of dynamical vulnerability that
scale free networks have [38].

Moving beyond averages, Figure 2 presents scatter-
plots of the efficiency of the network after the loss of ran-
domly selected nodes for 40 different tolerance values. Two
distinct trends are suggested from the efficiency versus
tolerance scatterplot. The first, a horizontal line of points
close to the unperturbed efficiency, indicates no efficiency
loss for any tolerance level. The second, corresponding to
tolerance-dependent damage, is a curve that initially in-
creases linearly, then saturates at high tolerance levels.
This figure confirms that an efficiency loss (damage) of up
to 25% is possible after the loss of a single generator or
transmission substation.

The scatterplot cannot illustrate the multiplicity of the
observed (tolerance, efficiency) points. To gain insights
into the distribution of efficiency loss we determine the
cumulative damage distribution P (d > D), i.e. the prob-
ability of observing damage larger than a given value D.
Figure 3 shows the cumulative damage distribution for five
tolerance values: α = 1.025 (circles), α = 1.1 (squares),
α = 1.2 (diamonds), α = 1.4 (upward triangles) and
α = 1.8 (downward triangles). As expected, the curves
corresponding to distinct tolerance values have markedly
different ranges, indicating that the higher the tolerance
value, the lower the probability to cause high damage.
The long horizontal regions of the α = 1.025 and α = 1.1
curves indicate a gap between high and low damage,
corresponding to the separation into two distinct dam-
age behaviors observed in the scatterplot. However, the
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Fig. 3. Cumulative damage distribution after transmission
node removal for four different tolerance values, α = 1.025
(circles), α = 1.1 (squares), α = 1.2 (diamonds), α = 1.4 (up-
ward triangles) and α = 1.8 (downward triangles). Note that
all the curves start relatively far from unity, indicating a non-
zero probability of no damage. The continuous line indicates
the cumulative distribution of disturbances on the power grid,
i.e. P (d > D) = D−δ+1, with δ � 1.1 [39,40].

other distributions are relatively continuous, and all have
power-law scaling regions with exponents whose magni-
tude increases with tolerance, varying between 0.5 and 2.
The probability distribution of disturbances on the power
grid has been found to be a power law with exponent close
to −1.1 [39,40], corresponding to an almost flat cumula-
tive distribution. This is in closest agreement with our
cumulative damage distributions for α = 1.1 and α = 1.2,
suggesting that the overload tolerance of the North Amer-
ican power grid is low.

Comparing Figures 2 and 3 suggests the following
question: do the two distinct (tolerance-dependent and
independent) behaviors correspond to different classes of
nodes? And if the answer is yes, what distinguishes the
nodes in the two domains? To answer these questions we
selected a sample of 15 nodes whose degrees and loads
cover the entire range of degrees and loads, and stud-
ied the effect of their (separate) removal for a range of
tolerance values. As Figure 4 shows, we find that some
nodes’ removal causes no decrease in network efficiency for
the entire range of tolerance values. Therefore, the North
American power grid is resilient to the loss of these nodes.
Other nodes’ removal causes tolerance-dependent damage
that approaches zero only for tolerance values higher than
a critical value. Included within the set of selected nodes
is the node with the highest initial load. Interestingly, the
removal of that particular node does not have the greatest
effect upon the network. The node that has the greatest
effect initially and a substantial effect over the entire range
of tolerance values has roughly 80% the maximum load.

Based on Figure 4 we conclude that there are three
separable classes of nodes:

1. Nodes whose removal causes no or very little damage
at any tolerance. The abundance of these nodes can be
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Fig. 4. Representative sample of node-dependent damage for
different tolerance values. Two main types of behavior can be
distinguished, one corresponding to no damage, and the other
to a universal damage-versus-tolerance curve. A third type rep-
resents a transition from tolerance-dependent to no-damage
behavior. The continuous curve corresponds to equation (5).
Inset: comparison of equation (5) with a cumulated scatter-
plot of damage at different tolerance levels that contains all
the points of Figure 2.

calculated from Figure 3 as 1− Pα�1(D > 0), thus we
can conclude that around 60% of the nodes are in this
category.

2. Nodes whose removal causes a tolerance-dependent
damage following the functional form

D = D0

(

1 − xβ

Kβ + xβ

)

(5)

where x = α − 1, D0 = 0.23 is the maximum damage,
K +1 ∼ 1.2 corresponds to the tolerance value causing
half-maximal damage, and the exponent β � 2. The
removal of these nodes causes the maximal damage to
the system possible at any given tolerance, and there-
fore these nodes comprise the tail end of the cumu-
lative damage distribution presented in Figure 3 (see
also the inset of Fig. 4). According to equation (5), a
tolerance value of α � 3 would be needed in order for
the damage caused by the removal of a substation in
this class to be negligible (less than 0.5%).

3. Nodes that follow the tolerance-dependent curve
(Eq. (5)) for low tolerances, then transition to the no-
damage behavior. The tolerance values corresponding
to this transition are in the range α ∈ (1.05, 1.4) and
differ from node to node, and the transitions are usu-
ally steep. These nodes make up the bulk of the cumu-
lative damage distribution presented in Figure 3.

Based on this picture, the range of damage possible at a
given tolerance value is from zero (behavior 1) to the value
given by equation (5) for behavior 2, in good agreement
with the maximum damage indicated by Figure 3.

We find that the nodes causing no efficiency loss (be-
havior 1) have both low betweenness and low degrees while
the nodes that do affect the network upon removal have
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Fig. 5. (a) The relationship between node degree, load, and
the efficiency loss its removal causes for 43 randomly selected
nodes. The overload tolerance is α = 1.2. The loss of nodes with
very low load and degree (filled circles) causes no damage. (b)
Load histogram for the generators (white bars) and transmis-
sion substations (dashed bars) whose removal does not cause
any damage at α = 1.025. Each bin corresponds to a load
range of 1000. A total of 639 generators and 476 transmission
substations were included in this plot.

higher betweenness/degree. Figure 5a relates node degree
and load with the damage caused by the node’s removal
for a set of 43 randomly selected nodes. The plot indicates
that, although there is no direct correlation between de-
gree, load and efficiency loss, nodes that have both low
degree and relatively low load will cause little damage
when perturbed. Figure 5b shows the load histogram of
generators and transmission substations whose removal at
tolerance α = 1.025 leads to no efficiency loss. It is evident
from the figure that the majority of nodes whose removal
causes no damage have loads < 1000. Overall we find that
90% of no-damage-causing generators have loads < 1000
and degree < 3, while 90% of non-damage-causing trans-
mission nodes have load < 2000 and degree = 2. The frac-
tion of generators with degree 1 (also called leaf nodes),
expected to cause insignificant efficiency loss, is 72%, and
no transmission substations are leaf nodes. Thus the net-
work’s resilience is higher than expected from the number
of leaf nodes alone.

Moving to the cascading failure, Figure 6a shows a
transmitter substation load-based failure at a tolerance of
α = 1.025. Here we remove the highest-load node, wait for
the system to stabilize, then find and remove the current
highest-load node, repeating this iteration several times.
The successive node removals cause periodic oscillations in
the network efficiency, and the amplitude of these oscilla-
tions seems to increase then decrease again. Interestingly,
the first node removed does the most damage while each
successive removal does little to the worsening of the aver-
age efficiency. Similar behavior is recorded for generators.
In random removals most behaviors, due to the higher
probability of selecting a low degree and low betweenness
node, reach stability, where the efficiency remains roughly
constant after the first removal as in Figure 6b. These
results are complementary and similar in spirit to the re-
sults of static transmission node removals [11] where the
removal of up to 1% of the nodes had little effect on the
connectivity of the power grid. As reference [11] has found,
in this regime the connectivity of the grid, in other words

0 500 1000 1500
Iterations

0.02

0.025

0.03

0.035

0.04

N
et

w
or

k 
ef

fi
ci

en
cy

 E
(G

f)

0 500 1000 1500
Iterations

0 10 20 30 40 50

0.032

0.036

0.04

random failureload-based failure

(a) (b)

Fig. 6. Cascading failure with 30 consecutive node removals.
A new node was removed at multiples of 50 iterations, the
selection was either based on the highest load (a) or random
(b). The upper and lower curves correspond to the two values in
a period-two oscillation of the network efficiency. Inset: typical
evolution of network efficiency after the removal of a single
node.

the reachability between generators and distribution
substations, decreases approximately proportionally with
the fraction of nodes removed. Here we obtain efficiency
loss (damage) of 40% after the removal of 0.33% of the
high-load transmission nodes. Both of these results sug-
gest that perturbations higher than 1% are needed for
catastrophic failure.

The picture suggested by our results is simultaneously
reassuring and ominous. The North American power grid
has been proven both theoretically and empirically to be
highly robust to random failures. We also find that 60% of
single substation losses do not cause cascading failure but
only limited perturbations in the transmission efficiency of
the power grid. However, this research highlights the possi-
ble damage done to the network by a more targeted attack
upon the few transmission substations with high between-
ness and high degree. Our results, taken together with the
observed disturbance distribution on the power grid [39,
40], suggest that even the loss of a single high-load and
high-degree transmission substation reduces the efficiency
of the power grid by 25%. This vulnerability at the trans-
mission level deserves serious consideration by government
and business officials so that cost-effective counter mea-
sures can be developed. Changes in the topology of the
power grid, especially in its heterogeneous load distribu-
tion [11], will decrease its sensitivity to the failure of high-
load transmission lines. The possible stabilizing measures
include reducing the load upon the highly loaded nodes
by building more transmission lines and substations, con-
trolling the spread of the cascade [38,41], or producing
power on a more local level via environmentally friendly
methods.
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